Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Laboratório de Materiais Elétricos – LAMATE

Experiência 2 – Materiais condutores, semicondutores, isolante, junções p-n, fotodiodos Chip 3 – Diodos de Junção p-n e Fotodiodos

O objetivo deste primeiro ensaio proposto com o *chip n°3* consiste em analisar as características básicas de materiais semicondutores, possibilitando fazer comparações entre suas propriedades elétricas e as de materiais isolantes e condutores. A seguir, é apresentada a noção de *junção p-n* e também realizadas experimentações com dispositivos baseados nos princípios básicos da *junção p-n*, conhecidos como *diodos de junção*. Este primeiro ensaio com o *chip n°3* possibilita observar o comportamento de um diodo semicondutor, isto é, verificar como a corrente varia com a aplicação de diferentes valores de tensão. Ainda, na parte final do experimento, é possível estimar a potência gerada por um fotodiodo operando no modo fotovoltaico.

Introdução

A junção p-n é a forma mais simples de um dispositivo semicondutor, por este motivo é utilizada para demonstrar a maior parte das características de condução em materiais semicondutores. Sua formação usualmente consiste em dois blocos de silício fundidos. Há um gradiente de concentração cruzando a junção resultante, de forma que os portadores majoritários (partículas de carga) são difundidos através da mesma, isto é, por exemplo, elétrons são difundidos do material tipo n para o material tipo p, estabelecendo a condução. A partir daí pode-se reconhecer o diodo de junção, um dispositivo que conduz corrente quando polarizado diretamente, e que permanece bloqueado quando sujeito à polarização reversa.

Se uma junção p-n polarizada reversamente é iluminada, o impacto de fótons sobre a junção quebra as ligações covalentes, gerando pares de portadores, que por sua vez geram uma corrente reversa através da junção. Trata-se da fotocorrente, que é proporcional à intensidade da luz incidente. Este tipo de comportamento caracteriza o fotodiodo, bastante utilizado para converter sinais luminosos em sinais elétricos.

Prática

<u>Parte 1</u> – Medida e comparação da resistência de condutores, semicondutores e isolantes.

Material

- Chip n° 3
- Material condutor
- Material isolante
- 2 multímetros digitais
- Megômetro

Meça as resistências dos materiais condutores e isolantes, anote os valores obtidos e compare-os. Repita o procedimento para a trilha metálica do *chip* $n^{\circ}3$ e uma de suas trilhas semicondutoras. Construa uma tabela indicando as diferentes classes de materiais, conforme os valores obtidos experimentalmente. Tire conclusões.

Parte 2 – Medida da corrente no diodo de junção p-n

Material

- Chip n° 3
- Resistor de $1k\Omega$
- Resistor de $2.2k\Omega$
- Fios para as conexões
- Potenciômetro de 500Ω
- Fonte de tensão contínua 0-5V
- 2 multímetros digitais
- 1) Realize a montagem conforme mostrado nas figuras 1 e 2 a seguir. Varie a tensão V_1 de 0 a 1V em intervalos de 0.1V e meça a tensão V_2 . Monte uma tabela com os valores obtidos e os valores correspondentes de V_d e I.
- 2) Inverta os terminais de V_1 para polarizar o diodo de forma reversa, conforme mostrado nas figuras 3 e 4.
- 3) Desenhe um gráfico de I em função de V_d com os valores obtidos nos itens 1 e 2.
- 4) Comente as diferenças na condução entre uma *junção p-n* polarizada direta e reversamente. A partir de que valor de tensão a junção apresenta condução de corrente satisfatória?

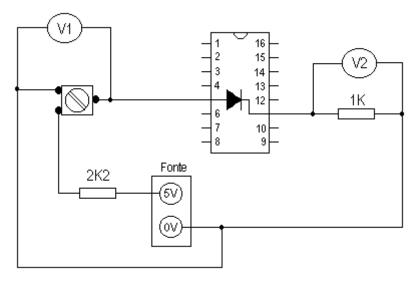


Figura 1 – Representação do circuito elétrico a ser montado no passo 1

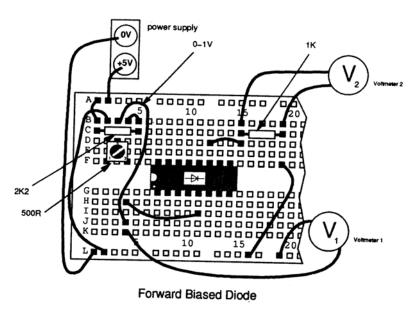


Figura 2 – Representação do circuito elétrico na protoboard

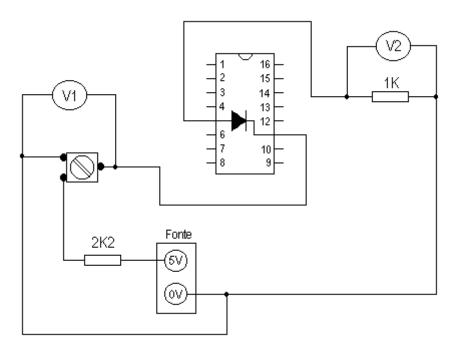


Figura 3 – Representação do circuito elétrico a ser montado no passo 2

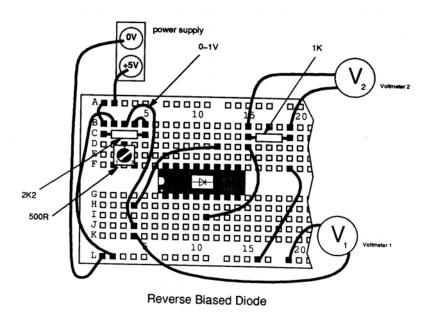
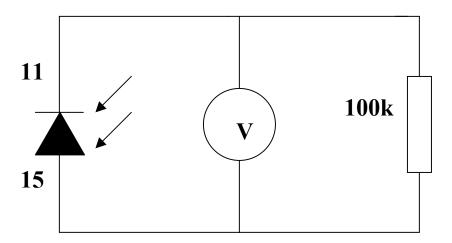



Figura 4 – Representação do circuito elétrico na protoboard

Parte 3 – Fotocélula

Material

- Fotodiodo (D1 no *chip* n°3)
- Resistor de 100kΩ
- Fios para as conexões
- Multímetro digital
- Fonte de iluminação
- 1) Monte o circuito conforme o esquema abaixo
- 2) Ilumine o fotodiodo intensamente e meça a tensão sobre o resistor de carga.
- 3) Calcule a potência gerada.

Responda

- 1) O fotodiodo é um retângulo com lados iguais a 0.5mm e 0.8 mm. Utilize seus resultados para determinar a potência por mm² e por m².
- 2) Qual seria a área de célula solar necessária para gerar uma potência de saída de 1W?
- 3) Qual seria a potência de saída de um bloco de células solares de 10 cm²?

SCHOOLS CHIP PROJECT

Chip 03

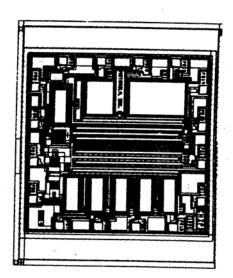
p-n junction diodes

Photodiodes

General description

The chip contains:

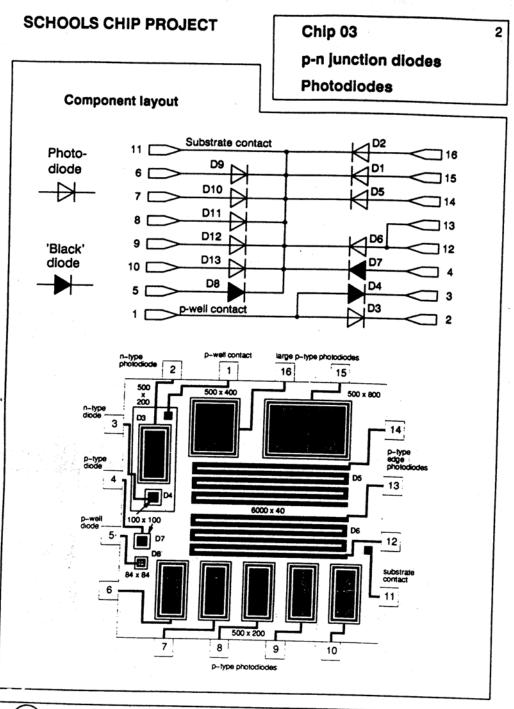
- 5 identical p+n photodiodes
- 2 larger area p+n photodiodes
- 2 edge p+n photodiodes
- 1 n+p-well photodiode
- 3 'black' diodes

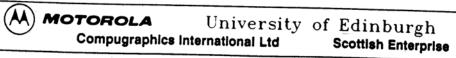

Package

Ceramic dual-in-line 16 pins glass lid 0.3" wide 0.1" pin pitch

Max power rating 1 W

Chip plan view





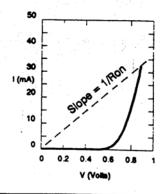
MOTOROLA

University of Edinburgh Scottlsh Enterprise

Compugraphics International Ltd

SCHOOLS CHIP PROJECT

Chip 03 p-n junction diodes **Photodiodes**


3

Diode properties

Diode	Photo or black	Туре	Length (microns)	Width (microns)	Max current (mA)	Ron (ohms)
D1	Р	p+n	800	500	60	15
D2	P	p+n	500	400	40	22
D3	P	n+p	500	200	22	41
D4 -	В	n+p	100	100	17	53
D5	Р	p+n	6000	40	35	26
D6	Ρ.	p+n	6000	40	7	130
D7	В	p+n	100	100	15	60
D8	В	p-n	84	84	15	60
D9	P	p+n	500	200	40	22
D10	P	p+n	500	200	40	22
D11	P	p+n	500	200	40	22
D12	P	p+n	500	200	40	22
D13	P	p+n	500	200	40	22

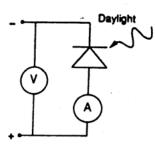
Common features

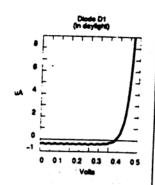
- Maximum forward voltage for all diodes = 0.9 volts
- 2. Derive Ron from forward current at 0.9 volts bias
- 3. Dark Roff > 10 Gohms for all diodes

MOTOROLA

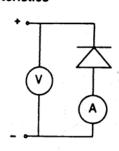
University of Edinburgh

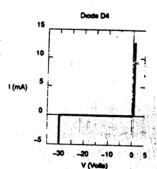
Compugraphics International Ltd

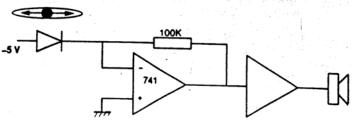

Scottish Enterprise


SCHOOLS CHIP PROJECT

Chip 03 p-n junction diodes **Photodiodes**


APPLICATIONS


1. Photovoltaic effect


2. Diode characteristics

3. Acoustic pick-up

For additional information, please contact: Prof John Robertson, Elect Eng Dept, University of Edinburgh, Tel: 031 650 5574 Fax: 031 650 6554

MOTOROLA

TOROLA University of Edinburgh
Compugraphics International Ltd Scottish Enterprise Scottish Enterprise